УДК 537.311.322

Надточий В.А., Уколов А.И., Щербина И.Л., Иванов Р.И.

¹ доктор физ.-мат. наук, профессор, заведующий кафедрой физики, ГВУЗ «ДГПУ»

² ассистент кафедры общенаучных дисциплин, АДИ «ДонНТУ»

 $^3\,$ студентка 5 курса физико-математического факультета, ГВУЗ «ДГПУ»

⁴ студент з курса АТР факультета, АДИ «ДонНТУ»

e-mail: ukolov-aleksei@mail.ru

ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ ДЕФЕКТОВ В ПОЛУПРОВОДНИКОВЫХ ПЛАСТИНАХ ИНТЕГРАЛЬНЫХ СХЕМ ПРИ ВОЗДЕЙСТВИИ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ

В работе приведены зависимости напряжений в области действия сосредоточенной силы при трехопорном изгибе тонкой полупроводниковой пластины Ge. При выбранных размерах и условиях деформирования превышение напряжений в образце вблизи концентратора существенно на глубине до 25 мкм и от него вдоль поверхности на расстоянии < 1.2 мм. Полученное методом структурного анализа распределение дефектов в приповерхностном слое качественно согласуется с результатами электрических измерений времени жизни τ неосновных носителей заряда. Использованный зондовый метод измерения τ может быть рекомендован для контроля степени дефектности на малых фрагментах интегральных схем.

Ключевые слова: напряжение, дефекты, дислокации, время жизни.

Введение

Установлено [1, 2], что около 50% отказов в микроэлектронных приборах вызвано механическими воздействиями, возникающими в процессе производства, испытаний и эксплуатации как самого прибора, так и элементов, входящих в его состав. Распределение напряжений в полупроводниковом кристалле обусловлено совокупностью технологических операций на различных стадиях производства интегральных схем (ИС) - от выращивания до механических испытаний готовой продукции. Комплексное исследование микропластичности полупроводниковых кристаллов *Ge* при низких температурах ($T < 0.35T_{melt}$ (T_{melt} - температура плавления)) показало [3], что в зависимости от уровня механических напряжений и способа деформирования вблизи поверхности образуется дефектный слой, толщиной до 100 мкм из вакансионно-примесных кластеров и дислокаций, в то время как в толще кристалла сохраняется относительное совершенство [3-6].

© Надточий В.А., Уколов А.И., Щербина И.Л., Иванов Р.И., 2013

Поскольку размеры современных полупроводниковых структур весьма ограничены как вдоль поверхности, так и по толщине и составляют десяткисотни микрометров, то такие структуры могут находиться в пределах аномального дефектного слоя, образованного за счет действия концентраторов напряжения на краях пластины или пленочного покрытия, неровностях поверхности, включениях, скоплениях ростовых дефектов [7, 8]. Уровень остаточных напряжений в ИС определяется физико-механическими характеристиками элементов конструкции, уровнями механических и термических воздействий в процессе производства и чаще всего не поддается теоретическим расчетам. В [2] отмечается также об отсутствии практических методов производственного контроля уровней внутренних напряжений и плотности структурных дефектов в ИС из-за сложности конструктивной иерархии активных и пассивных элементов, составляющей приборную структуру. В данной работе показана возможность оценки распределения структурных дефектов на основе электрических измерений времени жизни au неравновесных носителей заряда на поверхности деформированной трехопорным изгибом пластины Ge. Параметр τ претерпевает заметное уменьшение уже при малых плотностях дефектов, когда изменение концентрации и подвижности основных носителей заряда незначительны [9, 10]. Зондовый метод определения au обладает высокой степенью локальности и позволяет по распределению структурных дефектов в напряженных областях устанавливать его корреляцию с полями созданных напряжений. Степень локальности метода зависит от радиуса полусферического наконечника зонда, который может быть получен для вольфрамовой проволочки от единиц микрометров [11] до нескольких десятков нанометров [12], так что ограничения могут определяться лишь допустимой механической нагрузкой на зонд для прокалывания окисной пленки и необходимой величиной импульса тока инжекции [13].

Основная часть

Элементарная формула для напряжений при изгибе в призматических стержнях дает удовлетворительные результаты только на некотором расстоянии от точки приложения силы. Вблизи этой точки будут, однако, значительные отклонения в распределении напряжений. Для случая тонкой пластины с прямоугольным сечением можно получить строгое решение для распределения напряжений, рассматривая действие на неё силы F (рис. 1) при нагружении клином определенной ширины. Указанная модель позволяет рассчитать концентрацию напряжений, а затем полученные результаты учесть в схеме трехопорного изгиба (рис.2,а). Распределение напряжений (рис. 1)

имеет цилиндрическую симметрию радиуса r [14, 15]. Выделенный элемент поверхности A подвергается простому сжатию в радиальном направлении, а напряжение

$$\sigma_r = -k \frac{F \cos \theta}{br},\tag{1}$$

где r - есть радиальное расстояние от точки приложения груза и b - ширина пластины. Коэффициент $k = \pi/2$ определяется из того обстоятельства,

Рис. 1: Распределение напряжений в пластине под действием сосредоточенной силы F

что напряжения σ_r , распределенные вдоль полуокружности, показанной на рис.1 пунктиром, находятся в равновесии с силой F. Если рассмотреть горизонтальную плоскость mn, то нормальное напряжение σ_y , действующее по этой плоскости, будет равно [14]

$$\sigma_y = \sigma_r \cos^2 \theta = -\frac{2F}{\pi} \frac{\cos^3 \theta}{br} = -\frac{2F}{\pi} \frac{\cos^4 \theta}{by},\tag{2}$$

При определении равнодействующих горизонтальных составляющих радиальных давлений показано [14, 15], что сосредоточенная сила F вызывает расклинивающее действие двумя противоположными силами величиной F/π (рис.1). В случае пластины толщиной h и шириной b эти силы, действующие на расстоянии h/2 от поверхности, вызывают в срединном поперечном сечении не только растягивающие напряжения, определяемые формулой

$$\sigma'_x = \frac{F}{\pi h b},\tag{3}$$

но также и напряжения изгиба, даваемые выражением

$$\sigma_x'' = -\frac{Fh}{2\pi} \frac{y}{I_z},\tag{4}$$

в котором $Fh/2\pi$ есть изгибающий момент, вызываемый горизонтальными силами F/π , y- расстояние от верхней плоскости пластины, принятое положительным вниз, и $I_z\!=\!bh^3/12$ - момент инерции поперечного сечения.

Випуск №3, 2013

Рис. 2: Схема деформирования пластины трехопорным изгибом (а) и распределение дефектов вблизи концентраторов (б). На рисунке обозначено: 1 - образец *Ge*, 2 - акустический излучатель

Накладывая напряжения из уравнений (3) и (4) на напряжение при трехопорном изгибе, определяемое по элементарной формуле для призматических стержней, находим, что нормальные напряжения в срединном поперечном сечении равняются

$$\sigma_x = \frac{1.5Fl}{bh^2} + \frac{F}{\pi bh} - \frac{6Fy}{\pi bh^2}.$$
(5)

Здесь первое слагаемое принятое равным σ_{max} как для поверхностного слоя в обычной формуле при изгибе стержней. Такое допущение правомерно для данной задачи при рассмотрении концентрации напряжений в тонком приповерхностном слое в области действия силы F.

Распределение полных напряжений в области действия деформирующей силы F (рис.2,а) было найдено с учетом составляющих σ_y (2) и σ_x (5), размеров пластины германия (l = 17 мм, b = 4 мм, h = 0.8 мм), а также величины силы F = 8 Н. Результаты расчетов приведены графически на рис.3, где точка приложения силы соответствует началу координат. При x = 0 на расстоянии от поверхности y = 2 мкм полное напряжение составляет $\sigma \approx 650$ МПа, но резко снижается по мере роста y (рис.1) до значения $\sigma \approx 80$ МПа, определяемого первым слагаемым в формуле (5), то-есть концентрация напряжений существенна лишь в слое, толщиной ~ 25 мкм. На расстояниях y > 25 мкм и x > 1.2 мм полное напряжение можно определить по элементарной формуле для балки при трехопорном изгибе.

Распределения напряжений в образце над нижними опорами можно найти подобным способом с учетом деформирования силой величиной F/2.

Рис. 3: Графики полных напряжений в области приложения силы F на различных расстояниях y от поверхности, мкм

Учет распределения статических и знакопеременных напряжений при УЗ воздействии, длительности испытаний при выбранной температуре (T = 310K), типа источников дислокаций в выращенном кристалле *Ge* и физических свойств приповерхностного слоя, а также выполненные структурные исследования в данной работе и в [3-8] с помощью оптической, электронной и атомно-силовой микроскопии позволили установить следующее:

1. В приповерхностном слое, толщиной в несколько десятков нанометров возникает массоперенос вещества вдоль поверхности, а глубже – до 5 мкм генерируются вакансионно-приместные кластеры и дислокационные петли, большей частью выходящие на поверхность. При наличии градиента напряжений диффузия атомов вдоль поверхности и вдоль дислокаций на поверхность порождает образование островков или гребней нанометровой высоты из совокупности островков [7, 8]. Этот эффект наиболее выражен вблизи концентраторов напряжений.

2. В более глубоких слоях под опорами на расстоянии от поверхности до 100 мкм и в тонком (до нескольких мкм) слое вдоль поверхности вдали от опор образуются вакансионно-примесные кластеры сферической формы или вакансионные диски вокруг ростовых включений. Их размеры, плотность и глубина залегания зависят от уровня напряжений и пересыщения вакансиями [3, 6, 16], которыми интенсивно насыщается приповерхностный слой под действием статической загрузки и УЗ облучения.

Известно, что дефекты типа дислокаций и кластеров, как эффективные центры рекомбинации [17], уменьшают время жизни τ неосновных носителей

заряда (в данном случае дырок) в соответствии с зависимостью $\tau = A/N$, где A - константа, N - плотность дефектов. На процессы рекомбинации неравновесных носителей электрических зарядов, инжектируемых с металлического зонда в кристалл, влияет сама поверхность, введенные деформированием дефекты приповерхностного слоя, а также ростовые дефекты в объеме кристалла. Поэтому при наличии нескольких видов рекомбинации математическую связь эффективного (измеряемого) времени жизни неосновных носителей заряда τ_{eff} с временем жизни неосновных носителей заряда на поверхности τ_s , в дефектном слое τ_l и объеме кристалла τ_v можно выразить формулой [18, 19]:

$$\frac{1}{\tau_{eff}} = \frac{1}{\tau_s} + \frac{1}{\tau_l} + \frac{1}{\tau_v},\tag{6}$$

Значение слагаемого $1/\tau_s = 2s/h$ в (6) определяется толщиной пластины h и скоростью поверхностной рекомбинации зарядов s. Значение параметра s в сильной степени зависит от состояния поверхности и может изменяться в интервале $2 - 10^6$ см/с. В данном эксперименте для уменьшения параметра s пластины Ge перед измерениями подвергались травлению в перекиси водорода. После такой обработки s = 50 см/с [20]. Время жизни τ_l в дефектном слое изменялось от 80 мкс до 250 мкс. Величины рассчитанного $\tau_s = 800$ мкс, объемного времени жизни по сертификату для данного образца было $\tau_v = 250$ мкс и учитывались как постоянные. Поэтому для тонкой пластины Ge с учетом введенных дефектов структуры время жизни в слое τ_l определяли как

$$\frac{1}{\tau_l} = \frac{1}{\tau_{eff}} - const. \tag{7}$$

Значения τ_{eff} измеряли в разных точках вдоль образца с шагом 1 мм по прямой, проходящей посередине плоскости сжатия и растяжения. Результаты расчетов τ_l приведены на рис.4. Концентрация дефектов и толщина дефектного слоя на плоскости растяжения максимальна в местах, где τ_l достигает своего минимума (точки a, c, e) и принимает значения, близкие к $\tau_v = 250$ мкс в областях с незначительными структурными нарушениями. Для верхней плоскости наблюдается только один провал вблизи точки f на кривой τ_l , соответствующий области максимальной концентрации напряжений (рис. 2,6 и рис.3). На рис.4 представлены оптические снимки структурных нарушений в разных областях на плоскости растяжения, выявленные химическим травлением. Подбором состава травителя и режима обработки можно выявить мелкие детали структуры типа кластеров и выходов дислокаций. Измерения τ можно выполнять также на готовых ИС с нанесен-

Рис. 4: Графики изменения времени жизни τ_l неравновесных носителей заряда в дефектном слое вдоль верхней (1) и нижней (2) поверхностей пластины Ge. На вставках приведены оптические снимки деформационных дефектов

ными активными и пассивными элементами (рис.5). Для удаления загрязнений на поверхности полупроводниковую пластину следует кратковременно протравить в перекиси водорода, промыть в дистиллированной воде и высушить. Наибольшая плотность дефектов появляется обычно на границах между структурными элементами и подложкой. Вдоль этих границ можно устанавливать под микроскопом измерительный вольфрамовый зонд, определять τ и оценивать уровень дефектности.

Рис. 5: Изображение участия типичной безкорпусной интегральной схемы, подготовленной для выполнения измерений времени жизни носителей заряда

Выводы

Таким образом, измеряя время жизни au_{eff} неосновных носителей заряда на полупроводниковых структурах, можно устанавливать корреляцию с распределением механических напряжений.

Данный метод был опробован на интегральных схемах типа КР1533, КР132РУ4Б и других.

Предложенный метод имеет ограничения, поскольку позволяет измерять τ от единиц до сотен микросекунд с удельным сопротивлением полупроводника $10^{-1} - 10^2 \,\mathrm{Om} \cdot \mathrm{cm}$ и погрешностью около $15 \,\%$ [12].

Литература

- Перевощиков В.А. Проблема ростовых и технологических микродефектов в приборных слоях структур «кремний на изоляторе», формируемых термокомпрессионным соединением пластин / В.А. Перевощиков, В.Д. Скупов // Вестник Новгородского ун-та, серия: ФТТ. 2001. № 2. С. 103 109.
- [2] Сергеев В.С. Напряжения и деформации в элементах микросхем / В.С. Сергеев, О.А. Кузнецов, Н.П. Захаров, В.А. Летягин — М.: Радио и связь. — 1987. — 88 с.
- [3] *Надточий В.А.* Микропластичность алмазоподобных кристаллов (Si, Ge, GaAs, InAs): дис. . . . доктора физ.-мат. наук: 01.04.07 / Надточий Виктор Алексеевич. Харьков, 2006. 471 с.
- [4] *Надточий В.А.* Исследование электрических свойств Ge и Si, деформированных при низких температурах / В.А. Надточий, Н.К. Нечволод, Д.Г. Сущенко // ФТВД. 2001. Т. 11, № 1. С. 104 110.
- [5] Надточий В.А. Изменение времени жизни носителей заряда и проводимости дефектного приповерхностного слоя Ge при термообработках / В.А. Надточий, Н.К. Нечволод, Н.Н. Голоденко // ФТВД. — 2004. — Т. 14, № 3. — С. 42 – 48.
- [6] Nadtochy V. Structure changes caused by the stress gradient in subsurface layers of germanium single crystals / V. Nadtochy, I. Zhikharev, M. Golodenko // Sol. State Phenomena. 2003. V. 94. P. 253 256.
- [7] Надточий В.А. Исследование поверхности деформированного Ge методом атомно-силовой микроскопии / В.А. Надточий, А.И. Уколов, В.П. Алехин // Деформация и разрушение материалов. — 2012. — № 4. — С. 26 – 33.

- [8] *Надточий В.А.* Формирование наноструктур в Ge при условии дислокационно-поверхностной диффузии / В.А. Надточий, А.И. Уколов, Н.К. Нечволод // ФТВД. 2012. Т. 22, № 3. С. 54 62.
- [9] *Тхорик Ю.А.* Структурная релаксация в полупроводниковых кристаллах и приборных структурах / Ю.А. Тхорик. Киев: Феникс. 1994. 247 с.
- [10] *Вавилов В.С.* Радиационные методы в твердотельной электронике / В.С. Вавилов, Б.М. Горин, Н.С. Данилин [и др.]. М.: Радио и связь. 1990. 184 с.
- [11] *Павлов Л.П.* Методы измерения параметров полупроводниковых материалов / Л.П. Павлов. М.: Высшая школа. 1987. 239 с.
- [12] *Вудраф Д.* Современные методы исследования поверхности / Д. Вудраф, Т. Делчар. — М.: Мир. — 1989. — 568 с.
- [13] Иглицын М.И. Об измерении времени жизни носителей заряда в полупроводниках / М.И. Иглицын, Ю.А. Концевой, В.Д. Кудин, А.А. Майер. // ЖТФ. — 1957. — Т. 27, № 7. — С. 1414 – 1424.
- [14] *Тимошенко С.П.* Сопротивление материалов. Более сложные вопросы теории и задачи / С.П. Тимошенко. М.: Наука. 1965. 480 с.
- [15] Timoshenko S. Theory of Elasticity / S. Timoshenko, J.N. Goodier. New York. – 1951. – 506 p.
- [16] Nadtochiy V. Microplasticity and electrical properties of subsurface layers of diamond-like semiconductors strained at low temperatures / V. Nadtochiy, N. Golodenko, N. Nechvolod // Functional Materials. 2003. V. 10, № 4. P. 702 706.
- [17] Концевой Ю.А. О рекомбинации в полупроводниках с макроскопическими дефектами / Ю.А. Концевой // ФТП. — 1970. — Т. 4, № 6. — С. 1184 – 1187.
- [18] Уколов А.И. Измерение времени жизни неосновных носителей заряда в приповерхностном слое монокристаллического Ge зондовым методом / А.И. Уколов, В.А. Надточий, Н.Н. Голоденко // Вісник ХНУ, серія «Фізика». — 2012. — № 962, В. 15. — С. 63 – 66.
- [19] *Надточій В.О.* Спосіб визначення міри дефектності приповерхневих шарів монокристалів германію або кремнію / Надточій В.О., Уколов О.І.; патент на винахід 97999, МПК G01N 27/87; опубл. 10.04.12.
- [20] Berezhinsky L.I. Spectra of the photo-electric phenomena physically differentiated on the light absorption factor / L.I. Berezhinsky, E.F. Venger, I.E. Matyash, B.K. Serdega // Semiconductor Physics, Quantum Electronics and Optoelectronics. — 2004. — V. 7, № 4. — P. 441 – 445.